Name
Brain
Namespace Keyword
MeSHAnatomy
Namespace
MeSH
Namespace Version
20170511
Namespace URL
https://arty.scai.fraunhofer.de/artifactory/bel/annotation/mesh-anatomy/mesh-anatomy-20170511.belanno

Sample Annotated Edges 5

act(a(MESH:"Lymphatic Vessels")) association tloc(a(CHEBI:macromolecule), fromLoc(GO:"extracellular space"), toLoc(MESH:"Intracellular Space")) View Subject | View Object

Together, three different models of impaired meningeal lymphatic function (pharmacological, surgical and genetic) showed a significant impact on brain perfusion by CSF macromolecules PubMed:30046111

act(a(MESH:"Lymphatic Vessels")) association bp(MESH:"Cerebrovascular Circulation") View Subject | View Object

Together, three different models of impaired meningeal lymphatic function (pharmacological, surgical and genetic) showed a significant impact on brain perfusion by CSF macromolecules PubMed:30046111

a(CHEBI:"amyloid-beta") positiveCorrelation path(MESH:"Alzheimer Disease") View Subject | View Object

Staining for amyloid-β in the brains of nine patients with Alzheimer’s disease and eight controls without Alzheimer’s disease (Extended Data Table 1) revealed, as expected, marked parenchymal deposition of amyloid-β in the brains of patients with Alzheimer’s disease, but not in the brains of the controls without Alzheimer’s disease (Extended Data Fig. 9l, m) PubMed:30046111

bp(MESH:"Cerebrovascular Circulation") association act(a(MESH:"Lymphatic Vessels")) View Subject | View Object

Together, three different models of impaired meningeal lymphatic function (pharmacological, surgical and genetic) showed a significant impact on brain perfusion by CSF macromolecules PubMed:30046111

act(a(MESH:"Lymphatic Vessels")) increases bp(MESH:"Cerebrovascular Circulation") View Subject | View Object

Prospero homeobox protein 1 heterozygous (Prox1+/−) mice, a genetic model of lymphatic vessel malfunction25, also presented impaired perfusion through the brain parenchyma and impaired CSF drainage (Extended Data Fig. 3e–i) PubMed:30046111

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.