p(HGNC:APBB1)
Overexpression of Mint1, Mint2, or Fe65 causes reduction in Aβ generation and deposition in the brains of transgenic mice, strongly suggesting a physiological role for these adaptors in regulating APP processing in the nervous tis- sue (17). PubMed:18650430
Overexpression of Mint1, Mint2, or Fe65 causes reduction in Aβ generation and deposition in the brains of transgenic mice, strongly suggesting a physiological role for these adaptors in regulating APP processing in the nervous tis- sue (17). PubMed:18650430
Overexpression of Mint1, Mint2, or Fe65 causes reduction in Aβ generation and deposition in the brains of transgenic mice, strongly suggesting a physiological role for these adaptors in regulating APP processing in the nervous tis- sue (17). PubMed:18650430
Moreover, Fe65 stabilizes the highly labile AICD, which may serve as a regulatory step in modulating the physiological func- tion of AICD (see below). PubMed:18650430
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.