Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 4

In-Edges 9

complex(p(HBP:HBP00071), p(HGNC:NAE1)) decreases p(HGNC:CTNNB1) View Subject | View Object

APP-binding protein 1 reportedly interacts with AICD and activates the neddylation pathway (Chen 2004), further down-regulating the level of beta-catenin and potentially resulting in apoptosis PubMed:22122372

p(HGNC:CTNNB1, pmod(Ac, Lys, 49)) increases p(HGNC:CTNNB1, loc(GO:membrane)) View Subject | View Object

The N-terminus of β-catenin has phosphorylation, ubiquitination, and acetylation sites that regulate its stability and signaling. In the absence of a Wnt signal, Ser33, Ser37, and Thr41 are constitutively phosphorylated by glycogen synthase kinase 3β (GSK3β). β-Catenin phosphorylated at these sites is recognized by β-transducin repeat-containing protein (βTrCP), which results in ubiquitination and degradation by the ubiquitin-proteasome pathway. The N-terminal regulatory domain of β-catenin also includes Ser45, a phosphorylation site for Casein Kinase 1α (CK1α) and Lys49, which is acetylated by the acetyltransferase p300/CBP-associated factor (PCAF). The relevance of Lys49 acetylation and Ser45 phosphorylation to the function of β-catenin is an active area of investigation. We find that HDAC6 inhibitors increase Lys49 acetylation and Ser45 phosphorylation but do not affect Ser33, Ser37, and Thr41 phosphorylation. Lys49 acetylation results in decreased ubiquitination of β-catenin in the presence of proteasome inhibition. While increased Lys49 acetylation does not affect total levels of β-catenin, it results in increased membrane localization of β-catenin. PubMed:25546293

Appears in Networks:

p(HGNC:CTNNB1, pmod(Ph, Ser, 33)) increases deg(p(HGNC:CTNNB1)) View Subject | View Object

The N-terminus of β-catenin has phosphorylation, ubiquitination, and acetylation sites that regulate its stability and signaling. In the absence of a Wnt signal, Ser33, Ser37, and Thr41 are constitutively phosphorylated by glycogen synthase kinase 3β (GSK3β). β-Catenin phosphorylated at these sites is recognized by β-transducin repeat-containing protein (βTrCP), which results in ubiquitination and degradation by the ubiquitin-proteasome pathway. The N-terminal regulatory domain of β-catenin also includes Ser45, a phosphorylation site for Casein Kinase 1α (CK1α) and Lys49, which is acetylated by the acetyltransferase p300/CBP-associated factor (PCAF). The relevance of Lys49 acetylation and Ser45 phosphorylation to the function of β-catenin is an active area of investigation. We find that HDAC6 inhibitors increase Lys49 acetylation and Ser45 phosphorylation but do not affect Ser33, Ser37, and Thr41 phosphorylation. Lys49 acetylation results in decreased ubiquitination of β-catenin in the presence of proteasome inhibition. While increased Lys49 acetylation does not affect total levels of β-catenin, it results in increased membrane localization of β-catenin. PubMed:25546293

Appears in Networks:

p(HGNC:CTNNB1, pmod(Ph, Ser, 37)) increases deg(p(HGNC:CTNNB1)) View Subject | View Object

The N-terminus of β-catenin has phosphorylation, ubiquitination, and acetylation sites that regulate its stability and signaling. In the absence of a Wnt signal, Ser33, Ser37, and Thr41 are constitutively phosphorylated by glycogen synthase kinase 3β (GSK3β). β-Catenin phosphorylated at these sites is recognized by β-transducin repeat-containing protein (βTrCP), which results in ubiquitination and degradation by the ubiquitin-proteasome pathway. The N-terminal regulatory domain of β-catenin also includes Ser45, a phosphorylation site for Casein Kinase 1α (CK1α) and Lys49, which is acetylated by the acetyltransferase p300/CBP-associated factor (PCAF). The relevance of Lys49 acetylation and Ser45 phosphorylation to the function of β-catenin is an active area of investigation. We find that HDAC6 inhibitors increase Lys49 acetylation and Ser45 phosphorylation but do not affect Ser33, Ser37, and Thr41 phosphorylation. Lys49 acetylation results in decreased ubiquitination of β-catenin in the presence of proteasome inhibition. While increased Lys49 acetylation does not affect total levels of β-catenin, it results in increased membrane localization of β-catenin. PubMed:25546293

Appears in Networks:

p(HGNC:CTNNB1, pmod(Ph, Thr, 41)) increases deg(p(HGNC:CTNNB1)) View Subject | View Object

The N-terminus of β-catenin has phosphorylation, ubiquitination, and acetylation sites that regulate its stability and signaling. In the absence of a Wnt signal, Ser33, Ser37, and Thr41 are constitutively phosphorylated by glycogen synthase kinase 3β (GSK3β). β-Catenin phosphorylated at these sites is recognized by β-transducin repeat-containing protein (βTrCP), which results in ubiquitination and degradation by the ubiquitin-proteasome pathway. The N-terminal regulatory domain of β-catenin also includes Ser45, a phosphorylation site for Casein Kinase 1α (CK1α) and Lys49, which is acetylated by the acetyltransferase p300/CBP-associated factor (PCAF). The relevance of Lys49 acetylation and Ser45 phosphorylation to the function of β-catenin is an active area of investigation. We find that HDAC6 inhibitors increase Lys49 acetylation and Ser45 phosphorylation but do not affect Ser33, Ser37, and Thr41 phosphorylation. Lys49 acetylation results in decreased ubiquitination of β-catenin in the presence of proteasome inhibition. While increased Lys49 acetylation does not affect total levels of β-catenin, it results in increased membrane localization of β-catenin. PubMed:25546293

Appears in Networks:

p(HGNC:DKK1) positiveCorrelation deg(p(HGNC:CTNNB1)) View Subject | View Object

In addition, as revealed by Western blot, small interfering RNA and immunofluorescence analysis, S100B-induced JNK activation increased expression of Dickopff-1 that, in turn, promoted glycogen synthase kinase 3-beta phosphorylation and beta-catenin degradation, causing canonical Wnt pathway disruption and tau protein hyperphosphorylation. PubMed:18494933

Appears in Networks:

a(PUBCHEM:135316034) decreases p(HGNC:CTNNB1) View Subject | View Object

For example, 19 genes products have been associated with atherosclerosis and are up or down-regulated by Protandim. Of these 19 genes, the first 16 listed (84%) were regulated by Protandim in the opposing direction to that taken by the atherosclerosis disease process. The probable benefit of this effect of Protandim is further supported by the fact that of the 11 gene products currently being targeted by drug interventions (Table 1, in bold type), nine of them (Table 1, marked by asterisks) are modulated by Protandim in the same direction that is proposed to be beneficial and caused by the therapeutic intervention. PubMed:22020111

path(MESH:Atherosclerosis) increases p(HGNC:CTNNB1) View Subject | View Object

For example, 19 genes products have been associated with atherosclerosis and are up or down-regulated by Protandim. Of these 19 genes, the first 16 listed (84%) were regulated by Protandim in the opposing direction to that taken by the atherosclerosis disease process. The probable benefit of this effect of Protandim is further supported by the fact that of the 11 gene products currently being targeted by drug interventions (Table 1, in bold type), nine of them (Table 1, marked by asterisks) are modulated by Protandim in the same direction that is proposed to be beneficial and caused by the therapeutic intervention. PubMed:22020111

p(FPLX:PPP2) increases deg(p(HGNC:CTNNB1)) View Subject | View Object

In Xenopus, PP2A- B56 is involved in β -catenin dephosphorylation and degradation and its phosphorylation directs activation of the Wnt pathway [43]. PubMed:23454242

Out-Edges 8

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.