p(HGNC:SRC)
The projection domain of tau may be involved in cell signaling that occurs through the interaction with Lck, Fgr and cSrc (Src-family kinases), growth factor receptor-bound protein 2 (Grb2), phospholipase C- [70], phosphatidylinositol and phosphatidylinositol bisphosphate [71,72], peptidyl-prolyl cis/trans isomerase Pin 1, and many others (for review see [73]), making them potential therapeutic targets in tauopathies [74]. PubMed:26751493
The projection domain of tau may be involved in cell signaling that occurs through the interaction with Lck, Fgr and cSrc (Src-family kinases), growth factor receptor-bound protein 2 (Grb2), phospholipase C- [70], phosphatidylinositol and phosphatidylinositol bisphosphate [71,72], peptidyl-prolyl cis/trans isomerase Pin 1, and many others (for review see [73]), making them potential therapeutic targets in tauopathies [74]. PubMed:26751493
The mechanism underlying the effect of BDNF and CNTF on NF-κB activation has been attributed to the activation of Src and Lck non-receptor tyrosine kinases which phosphorylate IκBα on Tyr42 resulting in subsequent NF-κB activation PubMed:28745240
Furthermore, inhibitors of SRC, a closely related tyrosine kinase, also prevent nicotinic protection of differentiated PC12 cells against serum-deprivation-induced cell death (Li et al., 1999b), and inhibitors of FYN or Janus kinase-2 (JAK-2) block the neuroprotection against Abeta toxicity of therapeutic AChE inhibitors (Takada-Takatori et al., 2006). PubMed:19293145
The projection domain of tau may be involved in cell signaling that occurs through the interaction with Lck, Fgr and cSrc (Src-family kinases), growth factor receptor-bound protein 2 (Grb2), phospholipase C- [70], phosphatidylinositol and phosphatidylinositol bisphosphate [71,72], peptidyl-prolyl cis/trans isomerase Pin 1, and many others (for review see [73]), making them potential therapeutic targets in tauopathies [74]. PubMed:26751493
The projection domain of tau may be involved in cell signaling that occurs through the interaction with Lck, Fgr and cSrc (Src-family kinases), growth factor receptor-bound protein 2 (Grb2), phospholipase C- [70], phosphatidylinositol and phosphatidylinositol bisphosphate [71,72], peptidyl-prolyl cis/trans isomerase Pin 1, and many others (for review see [73]), making them potential therapeutic targets in tauopathies [74]. PubMed:26751493
PP2A enzymes can also become transiently inactivated following tyrosine phosphorylation of the catalytic subunit at the putative Tyr-307 site,via activation of src kinase, epidermal growth factor receptor or insulin signaling (Chen et al.,1992). PubMed:24653673
Besides Ser/Thr kinases, the protein tyrosine kinase src promotes the phosphorylation of PP2A on Tyr-307, resulting in PP2A inactivation and subsequent tau phosphorylation (Xiong et al.,2013; Arif et al.,2014). PubMed:24653673
PP2A enzymes can also become transiently inactivated following tyrosine phosphorylation of the catalytic subunit at the putative Tyr-307 site,via activation of src kinase, epidermal growth factor receptor or insulin signaling (Chen et al.,1992). PubMed:24653673
Besides Ser/Thr kinases, the protein tyrosine kinase src promotes the phosphorylation of PP2A on Tyr-307, resulting in PP2A inactivation and subsequent tau phosphorylation (Xiong et al.,2013; Arif et al.,2014). PubMed:24653673
The responsible kinases include 1) proline-directed protein kinases (PDPKs) targeting SP or TP motifs [e.g., GSK3b, cyclindependent kinase (CDK)-5, and MAPKs]; 2) non–proline directed protein kinases targeting KXGS-motifs [e.g., PKA, microtubule affinity-regulating kinase and synapses of the amphid defective (SADK)]; 3) protein kinases specific for tyrosines (e.g., Src, Lck, Syk, Fyn, and c-Abl kinase) (91). PubMed:29191965
The mechanism underlying the effect of BDNF and CNTF on NF-κB activation has been attributed to the activation of Src and Lck non-receptor tyrosine kinases which phosphorylate IκBα on Tyr42 resulting in subsequent NF-κB activation PubMed:28745240
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.