Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

In-Edges 0

Out-Edges 3

a(MESH:"xestospongin C") decreases act(p(HGNC:CHRNA7)) View Subject | View Object

We confirmed the involvement of IP3Rs in choline-induced calcium transients at the GC of PC12 cells. Cells were preincubated with the IP3R blocker xestospongin C (1 μM) prior to imaging. As shown in Fig. 7, A–C, pretreatment with xestospongin C reduced the α7 nAChR calcium response peak by 46.82% in α7 cells (peak: 1308.43% ΔF/Fθ ± −238.13%; + xestospongin C = 695.80% ΔF/Fθ ± 101.46%). PubMed:26088141

a(MESH:"xestospongin C") decreases bp(GO:"calcium-mediated signaling") View Subject | View Object

We confirmed the involvement of IP3Rs in choline-induced calcium transients at the GC of PC12 cells. Cells were preincubated with the IP3R blocker xestospongin C (1 μM) prior to imaging. As shown in Fig. 7, A–C, pretreatment with xestospongin C reduced the α7 nAChR calcium response peak by 46.82% in α7 cells (peak: 1308.43% ΔF/Fθ ± −238.13%; + xestospongin C = 695.80% ΔF/Fθ ± 101.46%). PubMed:26088141

a(MESH:"xestospongin C") decreases act(p(HGNC:CHRNA7, var("p.345A"), var("p.346A"), var("p.347A"), var("p.348A"))) View Subject | View Object

Xestospongin C treatment did not impact the calcium peak (628.87% ΔF/Fθ ± 69.43%) or total calcium transient (AUC: 443.86% ΔF/Fθ2 × s ± 54.72%; + xestospongin C = 340.39% ΔF/Fθ2 × s ± 96.99%) in α7345–348A expressing cells (α7 to α7 + xestospongin C, p = 0.017; α7 to α7345–348A, p = 0.013; α7 to α7345-348A + xestospongin C, p = 0.017) (Fig. 7, B and C). The data underscores the inability of α7345–348A nAChRs to activate intracellular calcium via IP3Rs (18). PubMed:26088141

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.