Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

In-Edges 1

act(p(HGNC:MTOR)) association p(HGNC:MAP6) View Subject | View Object

The biological implication behind an impairment of microtubule dynamics is confirmed in post-mortem schizophrenic brain samples, as well as in mouse models of schizophrenia, where mTOR-dependent autophagy dysfunction is accompanied by an altered gene expression and protein levels of the microtubule-associated protein 6 (MAP6) PubMed:30061532

Out-Edges 1

p(HGNC:MAP6) association act(p(HGNC:MTOR)) View Subject | View Object

The biological implication behind an impairment of microtubule dynamics is confirmed in post-mortem schizophrenic brain samples, as well as in mouse models of schizophrenia, where mTOR-dependent autophagy dysfunction is accompanied by an altered gene expression and protein levels of the microtubule-associated protein 6 (MAP6) PubMed:30061532

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.