bp(GO:"proteasomal protein catabolic process")
For example, yeast Cdc48 (p97 in mammalian cells) is a conserved multisubunit enzyme that plays a major role in dissociating ubiquitinated proteins from their binding partners to promote their degradation by the proteasome [52] PubMed:24457024
The accumulation of proteins in AD patients’ brains generated interest in the role of proteasomal function. There is evidence suggesting that proteasomal activity, but not protein level, is decreased in AD-sensitive brain regions specifically compared to unaffected regions (68, 69). PubMed:24027553
Importantly, the Hsps are also critical at the end of a protein’s life, as they facilitate turnover by the proteasome system and the clearance of proteotoxic aggregates by autophagy [53] PubMed:21882945
During protein quality control, Hsp70, Hsp90 and Hsp27 (and their co-chaperones) often work in concert. If prolonged misfolding is detected, the chaperones shuttle the protein to a degradation endpoint, such as the proteasome or autophagy PubMed:21882945
During protein quality control, Hsp70, Hsp90 and Hsp27 (and their co-chaperones) often work in concert. If prolonged misfolding is detected, the chaperones shuttle the protein to a degradation endpoint, such as the proteasome or autophagy PubMed:21882945
During protein quality control, Hsp70, Hsp90 and Hsp27 (and their co-chaperones) often work in concert. If prolonged misfolding is detected, the chaperones shuttle the protein to a degradation endpoint, such as the proteasome or autophagy PubMed:21882945
Interdependence of the proteasome and lysosomal system is also suggested by observations that, when proteasome activity is inhibited, proteins accumulate that become substrates for autophagy (Fortun et al. 2003) PubMed:22908190
For example, p62, an adaptor protein for autophagy, also influences proteasomal degradation, whereas VCP/p97 acting through p62 and ubiquitin regulates both the proteasome-dependent endoplasmic reticulum–associated degradation (ERAD) pathway and aspects of autophagosome maturation (Tresse et al. 2010). PubMed:22908190
The E3 ligase Parkin, a protein implicated in Parkinson’s disease, creates an autophagy signal on mitochondria and also tags proteins elsewhere for proteasomal degradation (Yoshii et al. 2011). PubMed:22908190
Diseasecausing mutations in ATP13A2 result in protein retention in the endoplasmic reticulum and enhanced proteasomal degradation, suggesting that neurodegeneration could be caused by overwhelming the UPS and/or loss of function in lysosomal protein degradation [39]. PubMed:18930136
The accumulation of proteins in AD patients’ brains generated interest in the role of proteasomal function. There is evidence suggesting that proteasomal activity, but not protein level, is decreased in AD-sensitive brain regions specifically compared to unaffected regions (68, 69). PubMed:24027553
It has been indicated that intracellular tau proteins are also degraded by autophagy and proteasomal pathways (Wang and Mandelkow 2012) PubMed:29626319
Interdependence of the proteasome and lysosomal system is also suggested by observations that, when proteasome activity is inhibited, proteins accumulate that become substrates for autophagy (Fortun et al. 2003) PubMed:22908190
Interdependence of the proteasome and lysosomal system is also suggested by observations that, when proteasome activity is inhibited, proteins accumulate that become substrates for autophagy (Fortun et al. 2003) PubMed:22908190
For example, p62, an adaptor protein for autophagy, also influences proteasomal degradation, whereas VCP/p97 acting through p62 and ubiquitin regulates both the proteasome-dependent endoplasmic reticulum–associated degradation (ERAD) pathway and aspects of autophagosome maturation (Tresse et al. 2010). PubMed:22908190
Tau phosphorylated at Ser262 or Ser356 cannot be recognized by the C terminus of HSP70‑interacting protein–heat shock protein 90 (CHIP–HSP90) complex and is thus spared from proteasomal degradation PubMed:26631930
Tau phosphorylated at Ser262 or Ser356 cannot be recognized by the C terminus of HSP70‑interacting protein–heat shock protein 90 (CHIP–HSP90) complex and is thus spared from proteasomal degradation PubMed:26631930
Tau is known to be ubiquitylated through Lys48 linkages by CHIP for proteasomal degradation PubMed:26631930
Notably, one study demonstrated that tau can also be ubiquitylated through Lys63 linkages by TNF receptor-associated factor 6 (TRAF6) — again, for proteasomal degradation PubMed:26631930
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.