Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

Heme Curation v0.0.1-dev

Mechanistic knowledge surrounding heme

In-Edges 0

Out-Edges 4

p(PFAM:Leukocidin) increases bp(MESH:Eryptosis) View Subject | View Object

Eryptosis is tightly regulated and triggered by a wide range of (endogenous) mediators and stimuli such as calcium signaling, ceramide formation, complement activation, energy depletion, eicosanoid release, hemolysin, and heme [140–142]. PubMed:29956069

Appears in Networks:
Annotations
Cell Ontology (CL)
erythrocyte
MeSH
Liver
MeSH
Sepsis
Text Location
Review

p(PFAM:Leukocidin) increases bp(MESH:Eryptosis) View Subject | View Object

The same applies to hemolysin. For one thing, the pore-forming toxin hemolysin is one the pathogens’ tools of causing hemolysis or releasing hemoglobin and poorly available iron [139]; then again it trigger eryptosis, one mechanism of protecting against hemolysis [142]. PubMed:29956069

Appears in Networks:
Annotations
Cell Ontology (CL)
erythrocyte
MeSH
Liver
MeSH
Sepsis
Text Location
Review

p(PFAM:Leukocidin) increases path(MESH:Hemolysis) View Subject | View Object

The same applies to hemolysin. For one thing, the pore-forming toxin hemolysin is one the pathogens’ tools of causing hemolysis or releasing hemoglobin and poorly available iron [139]; then again it trigger eryptosis, one mechanism of protecting against hemolysis [142]. PubMed:29956069

Appears in Networks:
Annotations
Cell Ontology (CL)
erythrocyte
MeSH
Liver
MeSH
Sepsis
Text Location
Review

p(PFAM:Leukocidin) increases p(HGNC:HBB) View Subject | View Object

The same applies to hemolysin. For one thing, the pore-forming toxin hemolysin is one the pathogens’ tools of causing hemolysis or releasing hemoglobin and poorly available iron [139]; then again it trigger eryptosis, one mechanism of protecting against hemolysis [142]. PubMed:29956069

Appears in Networks:
Annotations
Cell Ontology (CL)
erythrocyte
MeSH
Liver
MeSH
Sepsis
Text Location
Review

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.