Name
prefrontal cortex
Namespace Keyword
Anatomy
Namespace
Uberon
Namespace Version
20170511
Namespace URL
https://arty.scai.fraunhofer.de/artifactory/bel/annotation/anatomy/anatomy-20170511.belanno

Sample Annotated Edges 4

bp(MESH:Aging) decreases p(FPLX:HSP90) View Subject | View Object

One study found that cytosolic Hsp90 was repressed in the superior frontal gyrus, while another demonstrated a similar repression in the prefrontal cortex of aged patients compared to controls (Berchtold et al., 2008; Loerch et al., 2008; Brehme et al., 2014). PubMed:29311797

a(GO:"neurofibrillary tangle") positiveCorrelation act(p(HGNC:TGM2)) View Subject | View Object

Total transglutaminase activity was significantly higher in the Alzheimer's disease prefrontal cortex compared to control. In addition the levels of tissue transglutaminase, as determined by quantitative immunoblotting, were elevated approximately 3-fold in Alzheimer's disease prefrontal cortex compared to control. To our knowledge, this is the first demonstration that transglutaminase is increased in Alzheimer's disease brain. There were no significant differences in transglutaminase activity or levels in the cerebellum between control and Alzheimer's disease cases. Because the elevation of transglutaminase in the Alzheimer's disease samples occurred in the prefrontal cortex, where neurofibrillary pathology is usually abundant, and not in the cerebellum, which is usually spared in Alzheimer's disease, it can be suggested that transglutaminase could be a contributing factor in neurofibrillary tangle formation. PubMed:9099822

Appears in Networks:
Annotations
Uberon
prefrontal cortex
Disease Ontology (DO)
Alzheimer's disease

act(p(HGNC:TGM2)) positiveCorrelation a(GO:"neurofibrillary tangle") View Subject | View Object

Total transglutaminase activity was significantly higher in the Alzheimer's disease prefrontal cortex compared to control. In addition the levels of tissue transglutaminase, as determined by quantitative immunoblotting, were elevated approximately 3-fold in Alzheimer's disease prefrontal cortex compared to control. To our knowledge, this is the first demonstration that transglutaminase is increased in Alzheimer's disease brain. There were no significant differences in transglutaminase activity or levels in the cerebellum between control and Alzheimer's disease cases. Because the elevation of transglutaminase in the Alzheimer's disease samples occurred in the prefrontal cortex, where neurofibrillary pathology is usually abundant, and not in the cerebellum, which is usually spared in Alzheimer's disease, it can be suggested that transglutaminase could be a contributing factor in neurofibrillary tangle formation. PubMed:9099822

Appears in Networks:
Annotations
Uberon
prefrontal cortex
Disease Ontology (DO)
Alzheimer's disease

path(MESH:"Alzheimer Disease") increases act(p(HGNC:TGM2)) View Subject | View Object

Total transglutaminase activity was significantly higher in the Alzheimer's disease prefrontal cortex compared to control. In addition the levels of tissue transglutaminase, as determined by quantitative immunoblotting, were elevated approximately 3-fold in Alzheimer's disease prefrontal cortex compared to control. To our knowledge, this is the first demonstration that transglutaminase is increased in Alzheimer's disease brain. There were no significant differences in transglutaminase activity or levels in the cerebellum between control and Alzheimer's disease cases. Because the elevation of transglutaminase in the Alzheimer's disease samples occurred in the prefrontal cortex, where neurofibrillary pathology is usually abundant, and not in the cerebellum, which is usually spared in Alzheimer's disease, it can be suggested that transglutaminase could be a contributing factor in neurofibrillary tangle formation. PubMed:9099822

Appears in Networks:
Annotations
Uberon
prefrontal cortex
Disease Ontology (DO)
Alzheimer's disease

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.