Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 2

In-Edges 3

p(HBP:"cis p-tau") decreases deg(p(HBP:"cis p-tau")) View Subject | View Object

A final point of interest relates to potential upstream modifications of tau. Endogenous tau is phosphorylated, and in AD, tau phosphorylation becomes dysregulated. This may interfere with subsequent processes including cleavage and degradation. For example, tau that is in the cis-conformation at T231 appears resistant to degradation, as cis-tau is found in dystrophic neurites while trans-tau is not. Additionally cis-tau partitions to the insoluble fraction (30). Phosphorylation at T231 prevents the isomerase Pin1 from converting cis-tau to trans-tau (30). PubMed:24027553

act(p(HGNC:PIN1)) decreases p(HBP:"cis p-tau") View Subject | View Object

Pin1 accelerates cis to trans conversion to prevent accumulation of pathogenic cis p-tau conformation in AD, providing the first structural evidence for how Pin1 protects against AD. PubMed:23157676

Appears in Networks:

path(MESH:"Alzheimer Disease") negativeCorrelation p(HBP:"cis p-tau") View Subject | View Object

Pin1 accelerates cis to trans conversion to prevent accumulation of pathogenic cis p-tau conformation in AD, providing the first structural evidence for how Pin1 protects against AD. PubMed:23157676

Appears in Networks:

Out-Edges 5

p(HBP:"cis p-tau") decreases deg(p(HBP:"cis p-tau")) View Subject | View Object

A final point of interest relates to potential upstream modifications of tau. Endogenous tau is phosphorylated, and in AD, tau phosphorylation becomes dysregulated. This may interfere with subsequent processes including cleavage and degradation. For example, tau that is in the cis-conformation at T231 appears resistant to degradation, as cis-tau is found in dystrophic neurites while trans-tau is not. Additionally cis-tau partitions to the insoluble fraction (30). Phosphorylation at T231 prevents the isomerase Pin1 from converting cis-tau to trans-tau (30). PubMed:24027553

p(HBP:"cis p-tau") decreases act(p(HGNC:PIN1)) View Subject | View Object

A final point of interest relates to potential upstream modifications of tau. Endogenous tau is phosphorylated, and in AD, tau phosphorylation becomes dysregulated. This may interfere with subsequent processes including cleavage and degradation. For example, tau that is in the cis-conformation at T231 appears resistant to degradation, as cis-tau is found in dystrophic neurites while trans-tau is not. Additionally cis-tau partitions to the insoluble fraction (30). Phosphorylation at T231 prevents the isomerase Pin1 from converting cis-tau to trans-tau (30). PubMed:24027553

p(HBP:"cis p-tau") negativeCorrelation path(MESH:"Alzheimer Disease") View Subject | View Object

Pin1 accelerates cis to trans conversion to prevent accumulation of pathogenic cis p-tau conformation in AD, providing the first structural evidence for how Pin1 protects against AD. PubMed:23157676

Appears in Networks:

p(HBP:"cis p-tau") increases a(HBP:"Tau aggregates") View Subject | View Object

Pin1 accelerates cis to trans conversion to prevent accumulation of pathogenic cis p-tau conformation in AD, providing the first structural evidence for how Pin1 protects against AD. PubMed:23157676

Appears in Networks:

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.