Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Entity

Name
Cerebral Cortex
Namespace
mesh
Namespace Version
20181007
Namespace URL
https://raw.githubusercontent.com/pharmacome/terminology/8ccfed235e418e4c8aa576f9a5ef0f838e794c7f/external/mesh-names.belns

Appears in Networks 5

In-Edges 9

bp(GO:cognition) association a(MESH:"Cerebral Cortex") View Subject | View Object

The popular amyloid cascade hypothesis posits that the gradual build-up of Abeta plaques leads to neuronal inflammation, dysfunction, and, eventually, cell death. The two brain regions most critically affected by this degeneration are the cortex and hippocampus, both of which are involved in cognition, learning, and memory. PubMed:24511233

bp(GO:learning) association a(MESH:"Cerebral Cortex") View Subject | View Object

The popular amyloid cascade hypothesis posits that the gradual build-up of Abeta plaques leads to neuronal inflammation, dysfunction, and, eventually, cell death. The two brain regions most critically affected by this degeneration are the cortex and hippocampus, both of which are involved in cognition, learning, and memory. PubMed:24511233

bp(GO:learning) association a(MESH:"Cerebral Cortex") View Subject | View Object

M1 mAChRs have been demonstrated to potentiate NMDA-receptor signaling in the hippocampus and cortex,48,49 brain areas intimately associated with learning and memory. In addition, M1 KO mice displayed reduced hippocampal long-term potentiation, a mechanism heavily implicated in learning and memory. Behaviorally, M1 KO animals display deficits in several medial prefrontal cortex-dependent cognitive tasks, including non-matching-to- sample, win-shift radial arm maze, and social discrimination tasks. PubMed:24511233

bp(GO:memory) association a(MESH:"Cerebral Cortex") View Subject | View Object

M1 mAChRs have been demonstrated to potentiate NMDA-receptor signaling in the hippocampus and cortex,48,49 brain areas intimately associated with learning and memory. In addition, M1 KO mice displayed reduced hippocampal long-term potentiation, a mechanism heavily implicated in learning and memory. Behaviorally, M1 KO animals display deficits in several medial prefrontal cortex-dependent cognitive tasks, including non-matching-to- sample, win-shift radial arm maze, and social discrimination tasks. PubMed:24511233

bp(GO:memory) association a(MESH:"Cerebral Cortex") View Subject | View Object

The popular amyloid cascade hypothesis posits that the gradual build-up of Abeta plaques leads to neuronal inflammation, dysfunction, and, eventually, cell death. The two brain regions most critically affected by this degeneration are the cortex and hippocampus, both of which are involved in cognition, learning, and memory. PubMed:24511233

p(HGNC:CHRM1) association a(MESH:"Cerebral Cortex") View Subject | View Object

Among the mAChR family members, the M1 subtype makes up 50–60% of the total and is predominantly expressed in all major areas of the forebrain, including the hippocampus, cerebral cortex, corpus striatum, and thalamus[36-38]. M1 mAChR-knockout mice show a series of cognitive defi cits and impairments in long-term potentiation, indicating that the M1 subtype is physiologically linked to multiple functions such as synaptic plasticity, neuronal excitability, neuronal differentiation during early development, and learning and memory PubMed:24590577

p(MGI:Chrnb2) increases a(MESH:"Cerebral Cortex") View Subject | View Object

Aged beta2 null mutant mice have a thinner cortex compared to agematched wild-type controls (Zoli et al., 1999). This work should be pursued further as it indicates a “neurotrophic” action of beta2 receptor activation by endogenous ACh (Zanardi et al., 2007) PubMed:25514383

path(MESH:"Alzheimer Disease") association a(MESH:"Cerebral Cortex") View Subject | View Object

The gross pathological changes consist of brain atrophy, particularly in the hippocampal formation, temporal lobes and parietotemporal cortices, accompanied by cortical thinning, enlarged ventricles and white matter abnormalities, as evident on MRI. PubMed:26195256

act(complex(GO:"NF-kappaB complex")) negativeCorrelation a(MESH:"Cerebral Cortex") View Subject | View Object

Moreover, NF-κB mediates the NSC migration in response to physiological and pathophysiological stimuli such as cerebral cortex injury [181], seizure [182], and ischemic stroke PubMed:28745240

Out-Edges 8

a(MESH:"Cerebral Cortex") association bp(GO:cognition) View Subject | View Object

The popular amyloid cascade hypothesis posits that the gradual build-up of Abeta plaques leads to neuronal inflammation, dysfunction, and, eventually, cell death. The two brain regions most critically affected by this degeneration are the cortex and hippocampus, both of which are involved in cognition, learning, and memory. PubMed:24511233

a(MESH:"Cerebral Cortex") association bp(GO:learning) View Subject | View Object

The popular amyloid cascade hypothesis posits that the gradual build-up of Abeta plaques leads to neuronal inflammation, dysfunction, and, eventually, cell death. The two brain regions most critically affected by this degeneration are the cortex and hippocampus, both of which are involved in cognition, learning, and memory. PubMed:24511233

a(MESH:"Cerebral Cortex") association bp(GO:learning) View Subject | View Object

M1 mAChRs have been demonstrated to potentiate NMDA-receptor signaling in the hippocampus and cortex,48,49 brain areas intimately associated with learning and memory. In addition, M1 KO mice displayed reduced hippocampal long-term potentiation, a mechanism heavily implicated in learning and memory. Behaviorally, M1 KO animals display deficits in several medial prefrontal cortex-dependent cognitive tasks, including non-matching-to- sample, win-shift radial arm maze, and social discrimination tasks. PubMed:24511233

a(MESH:"Cerebral Cortex") association bp(GO:memory) View Subject | View Object

The popular amyloid cascade hypothesis posits that the gradual build-up of Abeta plaques leads to neuronal inflammation, dysfunction, and, eventually, cell death. The two brain regions most critically affected by this degeneration are the cortex and hippocampus, both of which are involved in cognition, learning, and memory. PubMed:24511233

a(MESH:"Cerebral Cortex") association bp(GO:memory) View Subject | View Object

M1 mAChRs have been demonstrated to potentiate NMDA-receptor signaling in the hippocampus and cortex,48,49 brain areas intimately associated with learning and memory. In addition, M1 KO mice displayed reduced hippocampal long-term potentiation, a mechanism heavily implicated in learning and memory. Behaviorally, M1 KO animals display deficits in several medial prefrontal cortex-dependent cognitive tasks, including non-matching-to- sample, win-shift radial arm maze, and social discrimination tasks. PubMed:24511233

a(MESH:"Cerebral Cortex") association p(HGNC:CHRM1) View Subject | View Object

Among the mAChR family members, the M1 subtype makes up 50–60% of the total and is predominantly expressed in all major areas of the forebrain, including the hippocampus, cerebral cortex, corpus striatum, and thalamus[36-38]. M1 mAChR-knockout mice show a series of cognitive defi cits and impairments in long-term potentiation, indicating that the M1 subtype is physiologically linked to multiple functions such as synaptic plasticity, neuronal excitability, neuronal differentiation during early development, and learning and memory PubMed:24590577

a(MESH:"Cerebral Cortex") association path(MESH:"Alzheimer Disease") View Subject | View Object

The gross pathological changes consist of brain atrophy, particularly in the hippocampal formation, temporal lobes and parietotemporal cortices, accompanied by cortical thinning, enlarged ventricles and white matter abnormalities, as evident on MRI. PubMed:26195256

a(MESH:"Cerebral Cortex") negativeCorrelation act(complex(GO:"NF-kappaB complex")) View Subject | View Object

Moreover, NF-κB mediates the NSC migration in response to physiological and pathophysiological stimuli such as cerebral cortex injury [181], seizure [182], and ischemic stroke PubMed:28745240

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.