Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

In-Edges 0

Out-Edges 5

a(CHEBI:nifedipine) decreases a(CHEBI:"calcium(2+)") View Subject | View Object

As shown in Fig. 5, A–C, nifedipine was found to decrease the peak calcium response to choline in PC12 cells (peak: 795.00% ΔF/Fθ ± 107.1%) by 56.94% (p = 0.003), whereas prolonging the duration of the choline-induced calcium transient (AUC: 749.50% ΔF/Fθ2 × s ± 64.02%) in the same cell. PubMed:26088141

a(CHEBI:nifedipine) decreases act(a(CHEBI:choline)) View Subject | View Object

As shown in Fig. 5, A–C, nifedipine was found to decrease the peak calcium response to choline in PC12 cells (peak: 795.00% ΔF/Fθ ± 107.1%) by 56.94% (p = 0.003), whereas prolonging the duration of the choline-induced calcium transient (AUC: 749.50% ΔF/Fθ2 × s ± 64.02%) in the same cell. PubMed:26088141

a(CHEBI:nifedipine) increases bp(GO:"calcium-mediated signaling") View Subject | View Object

As shown in Fig. 5, A–C, nifedipine was found to decrease the peak calcium response to choline in PC12 cells (peak: 795.00% ΔF/Fθ ± 107.1%) by 56.94% (p = 0.003), whereas prolonging the duration of the choline-induced calcium transient (AUC: 749.50% ΔF/Fθ2 × s ± 64.02%) in the same cell. PubMed:26088141

a(CHEBI:nifedipine) causesNoChange bp(GO:"calcium-mediated signaling") View Subject | View Object

In α7345–348A nAChR expressing cells, nifedipine had no effect on the peak or the duration of the calcium transient (peak: 957.00% ΔF/Fθ ± 252.2%; AUC: 333.33% ΔF/Fθ2 × s ± 91.53%) relative to choline treatment alone (Fig. 5, A–C). The findings suggest that choline-induced calcium responses in PC12 cells involve the activity of VGCC (37, 38). PubMed:26088141

a(CHEBI:nifedipine) causesNoChange act(p(HGNC:CHRNA7, var("p.345A"), var("p.346A"), var("p.347A"), var("p.348A"))) View Subject | View Object

In α7345–348A nAChR expressing cells, nifedipine had no effect on the peak or the duration of the calcium transient (peak: 957.00% ΔF/Fθ ± 252.2%; AUC: 333.33% ΔF/Fθ2 × s ± 91.53%) relative to choline treatment alone (Fig. 5, A–C). The findings suggest that choline-induced calcium responses in PC12 cells involve the activity of VGCC (37, 38). PubMed:26088141

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.