No changes in Adnp levels were detected in the VTA or NAc (p’s > 0.05).
NAP has been shown to ameliorate Adnp deficiencies in the haploinsufficient mouse model [25], mechanistically by enhancing ADNP association with its microtubule and autophagy targets
These results indicate that restoration of ADNP function by NAP administration rescues the wild type phenotype of the Adnp+/− mice, by reversing the abnormal increase in alcohol intake seen in Adnp haploinsufficient female mice
Strikingly, NAP treatment reduced alcohol consumption in Adnp+/− mice, which did not differ from Adnp+/+ controls.
Originally, a reduction of 42% in the cortex, of 38% in cerebellum, and of 50% in hippocampus was observed in the levels of Adnp mRNA in Adnp+/− mice compared with Adnp intact mice
Importantly, Adnp+/− females showed higher alcohol consumption and preference, compared to female Adnp+/+ controls, whereas no difference was observed in males.
As shown in Fig. 3e, f, we found no difference between genotypes in saccharin or quinine intake, suggesting that the effect of Adnp deficiency is specific to alcohol, and does not apply to sweet reinforcers or bitter-taste solutions
As Fig. 4b depicts, over the first 2 weeks of drinking (no treatment or intranasal vehicle treatment) Adnp+/− females showed higher alcohol consumption as compared to their Adnp+/+ littermates, replicating our results above.
For example, one of these common genes was transcription factor AP2 beta (TFAP2b), which is downregulated by chronic alcohol exposure [41]. This gene had a 3.8-fold increased expression in female Adnp+/− mice, and in contrast, a five-fold decreased expression in male Adnp+/− mice, as compared to sex-matched Adnp+/+controls.
Together, our results indicate that reduced Adnp gene dosage leads to increased alcohol intake in female mice.
As shown in Fig. 1, we found that this sub-chronic alcohol treatment increased Adnp mRNA levels in the dorsal hippocampus 24 h, but not 2 h after the last alcohol injection, in both male and female mice (one-way ANOVA; males: F(2,10) = 5.94, p < 0.05; post-hoc, p < 0.02. Females: F(2,10) = 5.22, p < 0.05, post hoc, p < 0.05)
In addition, Adnp expression was increased at the 24 h time point in the NAc of female, but not male mouse (one-way ANOVA; females: F(2,9) = 10.87, p < 0.005; post hoc: p < 0.005; males: p > 0.05).
We found no changes in the expression of Adnp in the VTA (p’s > 0.05).
We found that among male mice, Adnp mRNA levels were increased in the dorsal hippocampus after a 24 h alcohol drinking session, but the level returned to baseline (water-drinking controls) after 24 h of withdrawal (Fig. 2b; one-way ANOVA: F(2,13) = 5.32, p < 0.05, post hoc comparisons, p’s < 0.05)
However, in female mice, the expression of Adnp was reduced after a 24-h alcohol-drinking session, and this reduction persisted after a 24-h withdrawal (Fig. 2c; one-way ANOVA: F(2,13) = 7.53, p < 0.01, post hoc comparisons, p’s < 0.05).
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.