Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 2

In-Edges 3

p(HBP:"Tau aggregates") positiveCorrelation p(HGNC:MAPT, pmod(Ac, Lys, 274)) View Subject | View Object

Recently, it has been proposed that tau protein acetylation may be responsible for tau aggregation in AD. Grinberg and collaborators detected tau acetylation at Lys274 in all tauopathies (both primary and secondary), except in AgD PubMed:26751493

act(p(HGNC:EP300)) increases p(HGNC:MAPT, pmod(Ac, Lys, 274)) View Subject | View Object

Incubation with p300, not pCAF, led to tau acetylation, while both p300 and pCAF were active in transferring acetyl groups to histones as expected (Figure 1A). A few putative acetylated lysines were in the N- and C- terminal regions; 13 were in microtubule-binding domains (Figure 1B and Table-S1). Putative acetylated N-terminal lysines (e.g., lysines 163, 174, and 180) appeared to be acetylated in all MS analyses. Those in the microtubule-binding domains appeared to be acetylated in a subset of MS analyses, suggesting variable acetylation at these sites in vitro. PubMed:20869593

Appears in Networks:

Out-Edges 3

p(HGNC:MAPT, pmod(Ac, Lys, 274)) positiveCorrelation p(HBP:"Tau aggregates") View Subject | View Object

Recently, it has been proposed that tau protein acetylation may be responsible for tau aggregation in AD. Grinberg and collaborators detected tau acetylation at Lys274 in all tauopathies (both primary and secondary), except in AgD PubMed:26751493

p(HGNC:MAPT, pmod(Ac, Lys, 274)) decreases p(HGNC:WWC1) View Subject | View Object

Here we report abnormal acetylation of K274 and K281 on tau, identified in AD brains, promotes memory loss and disrupts synaptic plasticity by reducing postsynaptic KIdney/BRAin (KIBRA) protein, a memory-associated protein.Transgenic mice expressing human tau with lysine-to-glutamine mutations to mimic K274 and K281 acetylation (tauKQ) exhibit AD-related memory deficits and impaired hippocampal long-term potentiation (LTP). TauKQ reduces synaptic KIBRA levels and disrupts activity-induced postsynaptic actin remodeling and AMPA receptor insertion. The LTP deficit was rescued by promoting actin polymerization or by KIBRA expression. In AD patients with dementia, we found enhanced tau acetylation is linked to loss of KIBRA. PubMed:27041503

Appears in Networks:

p(HGNC:MAPT, pmod(Ac, Lys, 274)) decreases bp(GO:"actin filament polymerization") View Subject | View Object

Here we report abnormal acetylation of K274 and K281 on tau, identified in AD brains, promotes memory loss and disrupts synaptic plasticity by reducing postsynaptic KIdney/BRAin (KIBRA) protein, a memory-associated protein.Transgenic mice expressing human tau with lysine-to-glutamine mutations to mimic K274 and K281 acetylation (tauKQ) exhibit AD-related memory deficits and impaired hippocampal long-term potentiation (LTP). TauKQ reduces synaptic KIBRA levels and disrupts activity-induced postsynaptic actin remodeling and AMPA receptor insertion. The LTP deficit was rescued by promoting actin polymerization or by KIBRA expression. In AD patients with dementia, we found enhanced tau acetylation is linked to loss of KIBRA. PubMed:27041503

Appears in Networks:

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.