Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

Tau Modifications v1.9.5

Tau Modifications Sections of NESTOR

In-Edges 4

a(HBP:"C-30-27") directlyDecreases act(p(HGNC:KAT2B)) View Subject | View Object

In this study, we modified the PCAF inhibitor by chemical derivatization and selected compound C-30-27 as the most potent PCAF inhibitor. We demonstrated that C-30-27 selectively inhibited acetylation-dependent nuclear factor-κB (NF-κB) at Lys-122 and suppressed the NF-κB-mediated inflammatory response induced by lipopolysaccharide (LPS) or Aβ in both BV2 and Neuro-2A (N2A) cells. Finally, we demonstrated that C-30-27 improved cognitive deficits, as well as the capacity for locomotion and the damaged cholinergic system in the Aβ-treated rats. PubMed:25672970

Appears in Networks:

act(p(FPLX:ERK)) positiveCorrelation act(p(HGNC:KAT2B)) View Subject | View Object

Here we show through systematic epigenetic studies that the histone acetyltransferase p300/CBP-associated factor (PCAF) promotes acetylation of histone 3 Lys 9 at the promoters of established key regeneration-associated genes following a peripheral but not a central axonal injury. Furthermore, we find that extracellular signal-regulated kinase (ERK)-mediated retrograde signalling is required for PCAF-dependent regenerative gene reprogramming. Finally, PCAF is necessary for conditioning-dependent axonal regeneration and also singularly promotes regeneration after spinal cord injury. PubMed:24686445

Appears in Networks:
Annotations
Uberon
dorsal root ganglion

p(FPLX:NFkappaB, pmod(Ac, Lys, 122)) positiveCorrelation act(p(HGNC:KAT2B)) View Subject | View Object

In this study, we modified the PCAF inhibitor by chemical derivatization and selected compound C-30-27 as the most potent PCAF inhibitor. We demonstrated that C-30-27 selectively inhibited acetylation-dependent nuclear factor-κB (NF-κB) at Lys-122 and suppressed the NF-κB-mediated inflammatory response induced by lipopolysaccharide (LPS) or Aβ in both BV2 and Neuro-2A (N2A) cells. Finally, we demonstrated that C-30-27 improved cognitive deficits, as well as the capacity for locomotion and the damaged cholinergic system in the Aβ-treated rats. PubMed:25672970

Appears in Networks:

p(HGNC:NGF) increases act(p(HGNC:KAT2B)) View Subject | View Object

Here we show through systematic epigenetic studies that the histone acetyltransferase p300/CBP-associated factor (PCAF) promotes acetylation of histone 3 Lys 9 at the promoters of established key regeneration-associated genes following a peripheral but not a central axonal injury. Furthermore, we find that extracellular signal-regulated kinase (ERK)-mediated retrograde signalling is required for PCAF-dependent regenerative gene reprogramming. Finally, PCAF is necessary for conditioning-dependent axonal regeneration and also singularly promotes regeneration after spinal cord injury. PubMed:24686445

Appears in Networks:
Annotations
Uberon
dorsal root ganglion

Out-Edges 4

act(p(HGNC:KAT2B)) positiveCorrelation p(FPLX:NFkappaB, pmod(Ac, Lys, 122)) View Subject | View Object

In this study, we modified the PCAF inhibitor by chemical derivatization and selected compound C-30-27 as the most potent PCAF inhibitor. We demonstrated that C-30-27 selectively inhibited acetylation-dependent nuclear factor-κB (NF-κB) at Lys-122 and suppressed the NF-κB-mediated inflammatory response induced by lipopolysaccharide (LPS) or Aβ in both BV2 and Neuro-2A (N2A) cells. Finally, we demonstrated that C-30-27 improved cognitive deficits, as well as the capacity for locomotion and the damaged cholinergic system in the Aβ-treated rats. PubMed:25672970

Appears in Networks:

p(HGNC:KAT2B) increases p(HGNC:CTNNB1, pmod(Ac, Lys, 49)) View Subject | View Object

The N-terminus of β-catenin has phosphorylation, ubiquitination, and acetylation sites that regulate its stability and signaling. In the absence of a Wnt signal, Ser33, Ser37, and Thr41 are constitutively phosphorylated by glycogen synthase kinase 3β (GSK3β). β-Catenin phosphorylated at these sites is recognized by β-transducin repeat-containing protein (βTrCP), which results in ubiquitination and degradation by the ubiquitin-proteasome pathway. The N-terminal regulatory domain of β-catenin also includes Ser45, a phosphorylation site for Casein Kinase 1α (CK1α) and Lys49, which is acetylated by the acetyltransferase p300/CBP-associated factor (PCAF). The relevance of Lys49 acetylation and Ser45 phosphorylation to the function of β-catenin is an active area of investigation. We find that HDAC6 inhibitors increase Lys49 acetylation and Ser45 phosphorylation but do not affect Ser33, Ser37, and Thr41 phosphorylation. Lys49 acetylation results in decreased ubiquitination of β-catenin in the presence of proteasome inhibition. While increased Lys49 acetylation does not affect total levels of β-catenin, it results in increased membrane localization of β-catenin. PubMed:25546293

Appears in Networks:

act(p(HGNC:KAT2B)) positiveCorrelation act(p(FPLX:ERK)) View Subject | View Object

Here we show through systematic epigenetic studies that the histone acetyltransferase p300/CBP-associated factor (PCAF) promotes acetylation of histone 3 Lys 9 at the promoters of established key regeneration-associated genes following a peripheral but not a central axonal injury. Furthermore, we find that extracellular signal-regulated kinase (ERK)-mediated retrograde signalling is required for PCAF-dependent regenerative gene reprogramming. Finally, PCAF is necessary for conditioning-dependent axonal regeneration and also singularly promotes regeneration after spinal cord injury. PubMed:24686445

Appears in Networks:
Annotations
Uberon
dorsal root ganglion

act(p(HGNC:KAT2B)) increases p(HBP:"Histone H3", pmod(Ac, Lys, 9)) View Subject | View Object

Here we show through systematic epigenetic studies that the histone acetyltransferase p300/CBP-associated factor (PCAF) promotes acetylation of histone 3 Lys 9 at the promoters of established key regeneration-associated genes following a peripheral but not a central axonal injury. Furthermore, we find that extracellular signal-regulated kinase (ERK)-mediated retrograde signalling is required for PCAF-dependent regenerative gene reprogramming. Finally, PCAF is necessary for conditioning-dependent axonal regeneration and also singularly promotes regeneration after spinal cord injury. PubMed:24686445

Appears in Networks:
Annotations
Uberon
dorsal root ganglion

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.