a(CHEBI:acrolein)
We were prompted to carry out this study because Acr is mainly localized in the neurons [54], is found in association with NFTs and dystrophic neurites surrounding senile plaques [55], is highly toxic to neurons, is found elevated 2–5 fold in affected regions of AD brain. EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. PubMed:23531502
We were prompted to carry out this study because Acr is mainly localized in the neurons [54], is found in association with NFTs and dystrophic neurites surrounding senile plaques [55], is highly toxic to neurons, is found elevated 2–5 fold in affected regions of AD brain. EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. PubMed:23531502
We were prompted to carry out this study because Acr is mainly localized in the neurons [54], is found in association with NFTs and dystrophic neurites surrounding senile plaques [55], is highly toxic to neurons, is found elevated 2–5 fold in affected regions of AD brain. EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. PubMed:23531502
We were prompted to carry out this study because Acr is mainly localized in the neurons [54], is found in association with NFTs and dystrophic neurites surrounding senile plaques [55], is highly toxic to neurons, is found elevated 2–5 fold in affected regions of AD brain. EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. PubMed:23531502
We were prompted to carry out this study because Acr is mainly localized in the neurons [54], is found in association with NFTs and dystrophic neurites surrounding senile plaques [55], is highly toxic to neurons, is found elevated 2–5 fold in affected regions of AD brain. EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. PubMed:23531502
Acrolein and methylglyoxal were the most reactive compounds followed by glyoxal and malondialdehyde in terms of formation of Tau dimers and higher molecular weight oligomers. Analysis of the Tau aggregates by electron microscopy study showed that formation of fibrils using wild-type Tau and several Tau mutants could be observed with acrolein and methylglyoxal but not with glyoxal and malondialdehyde. PubMed:17082178
We were prompted to carry out this study because Acr is mainly localized in the neurons [54], is found in association with NFTs and dystrophic neurites surrounding senile plaques [55], is highly toxic to neurons, is found elevated 2–5 fold in affected regions of AD brain. EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. PubMed:23531502
We were prompted to carry out this study because Acr is mainly localized in the neurons [54], is found in association with NFTs and dystrophic neurites surrounding senile plaques [55], is highly toxic to neurons, is found elevated 2–5 fold in affected regions of AD brain. EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. PubMed:23531502
We were prompted to carry out this study because Acr is mainly localized in the neurons [54], is found in association with NFTs and dystrophic neurites surrounding senile plaques [55], is highly toxic to neurons, is found elevated 2–5 fold in affected regions of AD brain. EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. PubMed:23531502
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.