p(HGNCGENEFAMILY:"DNAJ (HSP40) heat shock proteins")
TPR proteins tend to be induced, whereas HSP40s are repressed (Figure 1B). PubMed:25437566
Among the genes that are repressed in both aging and AD, the HSP70- HSP40 system corresponds to 36% of the 58 genes (Table S3D). PubMed:25437566
Ranked by decreasing median aging correlation, the induction of sHSPs and TPR genes consistently ranked high and the HSP60s, HSP40s, and HSP70s were consistently repressed. PubMed:25437566
Among repressed genes, the HSP40s exhibited significant change (p = 0.04875), with 62% of 48 HSP40 genes repressed in aging (p < 0.05) and 51% repressed in AD. PubMed:25437566
Additionally, an investigation of chaperone and cochaperone gene expression in young (36±4 years of age) and aged (73 ±4 years of age) human brain tissue revealed that of 332 genes examined, 101 are significantly repressed with age, including HSP70, HSP40, HSP90, and TRiC genes (113). Furthermore, 62 chaperone genes, including several small HSPs, were found to be significantly induced, likely as a result of the cellular response to accumulating protein damage with age (113). PubMed:25784053
The HSP70 and HSP40 family members exhibit significantly altered expression dynamics during aging in the human brain, both being consistently repressed with age (Brehme et al., 2014). PubMed:27491084
Many studies based on model systems support a role for candidates from each of the major chaperome families; HSP100, HSP90, HSP70, HSP60, HSP40, sHSPs, and TPR-domain-containing proteins in proteostasis. PubMed:27491084
The HSP40, HSP60 and HSP70 families were amongst the most repressed chaperones, with HSP70s being the most repressed group overall. However, in contrast with the broad spectrum of repressed chaperone families, sHSPs and the TPR co-chaperone proteins were the only families that were significantly induced. PubMed:27491084
Among repressed genes, HSP40s were found to show significant changes as a family, with 62% of overall 48 HSP40 family members repressed in aging brain (superior frontal gyrus), 51% repressed in AD, and 41% repressed in both aging and AD. PubMed:27491084
Many studies based on model systems support a role for candidates from each of the major chaperome families; HSP100, HSP90, HSP70, HSP60, HSP40, sHSPs, and TPR-domain-containing proteins in proteostasis. PubMed:27491084
HSP40s play a fundamental role as part of the HSP70-HSP40 system, as co-chaperones, stimulating HSP70 ATP hydrolysis (Fig. 3) (Kampinga and Craig, 2010; Kakkar et al., 2014). PubMed:27491084
Hsp40 ( J protein) and NEF cochaperones regulate the Hsp70 reaction cy- cle (38, 100). PubMed:23746257
This approach is based on multiple lines of evidence demonstrating that overexpression of chaperones such as Hsp70 and Hsp40 prevents the aggregation and toxicity of huntingtin and α-synuclein (38, 231–234). PubMed:23746257
This approach is based on multiple lines of evidence demonstrating that overexpression of chaperones such as Hsp70 and Hsp40 prevents the aggregation and toxicity of huntingtin and α-synuclein (38, 231–234). PubMed:23746257
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.