Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Entity

Name
canonical glycolysis
Namespace
go
Namespace Version
20180921
Namespace URL
https://raw.githubusercontent.com/pharmacome/terminology/b46b65c3da259b6e86026514dfececab7c22a11b/external/go-names.belns

Appears in Networks 1

Tau Modifications v1.9.5

Tau Modifications Sections of NESTOR

In-Edges 3

a(CHEBI:glyceraldehyde) decreases bp(GO:"canonical glycolysis") View Subject | View Object

A relationship has recently been reported between the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and apoptotic events14. Real-time RT-PCR experiments showed that the expression of GAPDH was significantly increased by the addition of GA (Fig. 2a). These results suggested that GA caused cell toxicity concomitant with increases in the gene expression of GAPDH in SH-SY5Y cells. PubMed:26304819

Appears in Networks:

path(MESH:"Alzheimer Disease") negativeCorrelation bp(GO:"canonical glycolysis") View Subject | View Object

Triosephosphate isomerase (TPI) is a key enzyme in cell metabolism that controls the glycolytic flow and energy production through the interconversion of dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate (G3P) (Richard, 1993). Notably, TPI is the only glycolytic enzyme whose functional deficiency is associated to neurodegeneration (Eber et al., 1991; Ovadi et al., 2004). In particular, inefficient glycolysis (Hoyer et al., 1988) and ATP depletion (Keil et al., 2004) are characteristic in Alzheimer’s disease brains. PubMed:19251756

Appears in Networks:

Out-Edges 1

bp(GO:"canonical glycolysis") negativeCorrelation path(MESH:"Alzheimer Disease") View Subject | View Object

Triosephosphate isomerase (TPI) is a key enzyme in cell metabolism that controls the glycolytic flow and energy production through the interconversion of dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate (G3P) (Richard, 1993). Notably, TPI is the only glycolytic enzyme whose functional deficiency is associated to neurodegeneration (Eber et al., 1991; Ovadi et al., 2004). In particular, inefficient glycolysis (Hoyer et al., 1988) and ATP depletion (Keil et al., 2004) are characteristic in Alzheimer’s disease brains. PubMed:19251756

Appears in Networks:

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.