Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Entity

Name
Vacuolar Proton-Translocating ATPases
Namespace
MeSH
Namespace Version
20181007
Namespace URL
https://raw.githubusercontent.com/pharmacome/terminology/01c9daa61012b37dd0a1bc962521ba51a15b38f1/external/mesh-names.belns

Appears in Networks 1

In-Edges 2

a(CHEBI:"calcium ion") increases act(a(MESH:"Vacuolar Proton-Translocating ATPases")) View Subject | View Object

Furthermore, presenilin-1, the most common mutation associated with early-onset familial AD (FAD), plays an essential role in calcium homeostasis and maintaining acidic lysosomal pH, with FAD-associated mutations disrupting calcium-dependent vATPase function in lysosomes [7,18–20] PubMed:29758300

p(HGNC:PSEN1, var("?")) decreases act(a(MESH:"Vacuolar Proton-Translocating ATPases")) View Subject | View Object

Furthermore, presenilin-1, the most common mutation associated with early-onset familial AD (FAD), plays an essential role in calcium homeostasis and maintaining acidic lysosomal pH, with FAD-associated mutations disrupting calcium-dependent vATPase function in lysosomes [7,18–20] PubMed:29758300

Out-Edges 0

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.