Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

In-Edges 3

p(HGNC:CDK5) increases rxn(reactants(p(HGNC:MAPT)), products(p(HGNC:MAPT, pmod(Ph)))) View Subject | View Object

Thus, we now know three kinases, cdk5, MAP kinase, and GSK-3, all of which are present in neurons, which are capable of transforming tau into the Alzheimer-like state, and therefore could account for the pathological phosphorylation of tau in Alzheimer brains PubMed:8282104

p(FPLX:ERK) increases rxn(reactants(p(HGNC:MAPT)), products(p(HGNC:MAPT, pmod(Ph)))) View Subject | View Object

Thus, we now know three kinases, cdk5, MAP kinase, and GSK-3, all of which are present in neurons, which are capable of transforming tau into the Alzheimer-like state, and therefore could account for the pathological phosphorylation of tau in Alzheimer brains PubMed:8282104

p(FPLX:GSK3) increases rxn(reactants(p(HGNC:MAPT)), products(p(HGNC:MAPT, pmod(Ph)))) View Subject | View Object

Thus, we now know three kinases, cdk5, MAP kinase, and GSK-3, all of which are present in neurons, which are capable of transforming tau into the Alzheimer-like state, and therefore could account for the pathological phosphorylation of tau in Alzheimer brains PubMed:8282104

Out-Edges 2

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.