Equivalencies: 0 | Classes: 1 | Children: 7 | Explore

Appears in Networks 2

In-Edges 7

Out-Edges 8

act(p(FPLX:CSNK1), ma(kin)) increases p(HGNC:MAPT, pmod(Ph, Ser, 208)) View Subject | View Object

Phosphorylation at Ser208 might be catalyzed by Casein kinase 1 (44), and its identification as a potential site for O-GlcNacylation (45) points to the important role of this residue. PubMed:28784767

p(FPLX:CSNK1) increases p(HGNC:SV2A, pmod(Ph, Ser, 80)) View Subject | View Object

We demonstrate that Casein kinase 1 family members, including isoforms of Tau-tubulin protein kinases (TTBK1 and TTBK2), phosphorylate human SV2A at two constellations of residues, namely Cluster-1 (Ser42, Ser45, and Ser47) and Cluster-2 (Ser80, Ser81, and Thr84). These residues are also phosphorylated in vivo, and the phosphorylation of Thr84 within Cluster-2 is essential for triggering binding to the C2B domain of human synaptotagmin-1 PubMed:25673844

Appears in Networks:

p(FPLX:CSNK1) increases p(HGNC:SV2A, pmod(Ph, Ser, 42)) View Subject | View Object

We demonstrate that Casein kinase 1 family members, including isoforms of Tau-tubulin protein kinases (TTBK1 and TTBK2), phosphorylate human SV2A at two constellations of residues, namely Cluster-1 (Ser42, Ser45, and Ser47) and Cluster-2 (Ser80, Ser81, and Thr84). These residues are also phosphorylated in vivo, and the phosphorylation of Thr84 within Cluster-2 is essential for triggering binding to the C2B domain of human synaptotagmin-1 PubMed:25673844

Appears in Networks:

p(FPLX:CSNK1) increases p(HGNC:SV2A, pmod(Ph, Ser, 45)) View Subject | View Object

We demonstrate that Casein kinase 1 family members, including isoforms of Tau-tubulin protein kinases (TTBK1 and TTBK2), phosphorylate human SV2A at two constellations of residues, namely Cluster-1 (Ser42, Ser45, and Ser47) and Cluster-2 (Ser80, Ser81, and Thr84). These residues are also phosphorylated in vivo, and the phosphorylation of Thr84 within Cluster-2 is essential for triggering binding to the C2B domain of human synaptotagmin-1 PubMed:25673844

Appears in Networks:

p(FPLX:CSNK1) increases p(HGNC:SV2A, pmod(Ph, Ser, 47)) View Subject | View Object

We demonstrate that Casein kinase 1 family members, including isoforms of Tau-tubulin protein kinases (TTBK1 and TTBK2), phosphorylate human SV2A at two constellations of residues, namely Cluster-1 (Ser42, Ser45, and Ser47) and Cluster-2 (Ser80, Ser81, and Thr84). These residues are also phosphorylated in vivo, and the phosphorylation of Thr84 within Cluster-2 is essential for triggering binding to the C2B domain of human synaptotagmin-1 PubMed:25673844

Appears in Networks:

p(FPLX:CSNK1) increases p(HGNC:SV2A, pmod(Ph, Ser, 81)) View Subject | View Object

We demonstrate that Casein kinase 1 family members, including isoforms of Tau-tubulin protein kinases (TTBK1 and TTBK2), phosphorylate human SV2A at two constellations of residues, namely Cluster-1 (Ser42, Ser45, and Ser47) and Cluster-2 (Ser80, Ser81, and Thr84). These residues are also phosphorylated in vivo, and the phosphorylation of Thr84 within Cluster-2 is essential for triggering binding to the C2B domain of human synaptotagmin-1 PubMed:25673844

Appears in Networks:

p(FPLX:CSNK1) increases p(HGNC:SV2A, pmod(Ph, Thr, 84)) View Subject | View Object

We demonstrate that Casein kinase 1 family members, including isoforms of Tau-tubulin protein kinases (TTBK1 and TTBK2), phosphorylate human SV2A at two constellations of residues, namely Cluster-1 (Ser42, Ser45, and Ser47) and Cluster-2 (Ser80, Ser81, and Thr84). These residues are also phosphorylated in vivo, and the phosphorylation of Thr84 within Cluster-2 is essential for triggering binding to the C2B domain of human synaptotagmin-1 PubMed:25673844

Appears in Networks:

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.