Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

Tau Modifications v1.9.5

Tau Modifications Sections of NESTOR

In-Edges 3

act(p(HGNC:SIRT1)) directlyDecreases p(HGNC:SRSF2, pmod(Ac, Lys, 52)) View Subject | View Object

We found that SIRT1 interacts with and deacetylates SC35, and inhibits SC35-promoted tau exon 10 inclusion. Substituting K52 residue of SC35 by arginine impairs the role of SC35 in tau exon 10 inclusion. These results suggest that SIRT1 may serve as a therapeutic target for tauopathy by regulating SC35-mediated tau exon 10 splicing. PubMed:29226865

Appears in Networks:

act(p(HGNC:SRSF2)) positiveCorrelation p(HGNC:SRSF2, pmod(Ac, Lys, 52)) View Subject | View Object

We found that SIRT1 interacts with and deacetylates SC35, and inhibits SC35-promoted tau exon 10 inclusion. Substituting K52 residue of SC35 by arginine impairs the role of SC35 in tau exon 10 inclusion. These results suggest that SIRT1 may serve as a therapeutic target for tauopathy by regulating SC35-mediated tau exon 10 splicing. PubMed:29226865

Appears in Networks:

Out-Edges 1

p(HGNC:SRSF2, pmod(Ac, Lys, 52)) positiveCorrelation act(p(HGNC:SRSF2)) View Subject | View Object

We found that SIRT1 interacts with and deacetylates SC35, and inhibits SC35-promoted tau exon 10 inclusion. Substituting K52 residue of SC35 by arginine impairs the role of SC35 in tau exon 10 inclusion. These results suggest that SIRT1 may serve as a therapeutic target for tauopathy by regulating SC35-mediated tau exon 10 splicing. PubMed:29226865

Appears in Networks:

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.