Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Entity

Name
6-(4-butylthio-1,2,5-thiadiazol-3-yl)-1-azabicyclo(3.2.1)octane
Namespace
mesh
Namespace Version
20181007
Namespace URL
https://raw.githubusercontent.com/pharmacome/terminology/8ccfed235e418e4c8aa576f9a5ef0f838e794c7f/external/mesh-names.belns

Appears in Networks 1

Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer's disease and schizophrenia. v1.0.0

This file encodes the article Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia by Choi et al, 2014

In-Edges 0

Out-Edges 2

a(MESH:"6-(4-butylthio-1,2,5-thiadiazol-3-yl)-1-azabicyclo(3.2.1)octane") decreases act(a(CHEBI:apomorphine)) View Subject | View Object

Conversely, the nonselective mAChR agonist BuTAC ([5R-(exo)]-6-[4-butylthio-1,2,5-thiadiazol-3-yl]-1-azabicyclo-[3.2.1]-octane) shows an antipsychotic profile when tested in numerous preclinical animal models. Administration of BuTAC reduces apomorphine-induced climbing and apomorphine-induced disruptions of prepulse inhibition78,79 and reduces conditioned avoidance responding in wild-type, but not M4 KO mice. PubMed:24511233

a(MESH:"6-(4-butylthio-1,2,5-thiadiazol-3-yl)-1-azabicyclo(3.2.1)octane") decreases path(MESH:"Avoidance Learning") View Subject | View Object

Conversely, the nonselective mAChR agonist BuTAC ([5R-(exo)]-6-[4-butylthio-1,2,5-thiadiazol-3-yl]-1-azabicyclo-[3.2.1]-octane) shows an antipsychotic profile when tested in numerous preclinical animal models. Administration of BuTAC reduces apomorphine-induced climbing and apomorphine-induced disruptions of prepulse inhibition78,79 and reduces conditioned avoidance responding in wild-type, but not M4 KO mice. PubMed:24511233

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.