Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

In-Edges 1

a(PUBCHEM:16240819) decreases act(p(HGNC:MTMR14)) View Subject | View Object

An unusual approach to augmenting autophagosome formation is represented by the brain- penetrant autophagy enhancer 99 (AUTEN-99), which blocks myotubularin-related protein 14 (MTMR14, also known as Jumpy), a phosphatase that inhibits the phos- phoinositide 3-kinase (PI3K)-mediated generation of the autophagosome membrane (FIG. 3) . AUTEN-99 aug- mented autophagic flux in isolated neurons, increased markers of autophagy in mouse brain and slowed neuro- degeneration in D. melanogaster models of PD and HD 181 . PubMed:30116051

Out-Edges 1

p(HGNC:MTMR14) decreases act(p(FPLX:PI3K)) View Subject | View Object

An unusual approach to augmenting autophagosome formation is represented by the brain- penetrant autophagy enhancer 99 (AUTEN-99), which blocks myotubularin-related protein 14 (MTMR14, also known as Jumpy), a phosphatase that inhibits the phos- phoinositide 3-kinase (PI3K)-mediated generation of the autophagosome membrane (FIG. 3) . AUTEN-99 aug- mented autophagic flux in isolated neurons, increased markers of autophagy in mouse brain and slowed neuro- degeneration in D. melanogaster models of PD and HD 181 . PubMed:30116051

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.