Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

Alzheimer's disease-type neuronal tau hyperphosphorylation induced by A beta oligomers v1.0.0

This document contains the bel code for the Article Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Abeta oligomers by De Felice et al

In-Edges 2

a(HBP:"amyloid-beta antibody, NU1") decreases complex(a(GO:synapse), a(HBP:"amyloid-beta derived diffusible ligands")) View Subject | View Object

Importantly, pre-incubation of AD brain extracts with NU1 significantly blocked the increase in Thr231 phosphotau immunofluorescence (Fig. 6G), establishing the tau hyperphosphorylation was induced by Abeta oligomers in the AD brain extracts. NU1 also prevented the binding of brain-derived ADDLs to synaptic hot-spots (Fig. 6H and I). In NU1-treated cultures, the presence of large extracellular aggregates indicates that the antibody sequesters ADDLs and prevents their interactions with neurons (Fig. 6I). PubMed:17403556

a(HBP:"amyloid-beta derived diffusible ligands") increases complex(a(GO:synapse), a(HBP:"amyloid-beta derived diffusible ligands")) View Subject | View Object

Following exposure to ADDLs, double-label immunofluorescence microscopy showed high levels of tau phosphorylated at Thr231, which discriminates among AD and non-AD subjects and patients with other forms of dementia (Hampel et al., 2004, 2003), in neurons with prominent dendritic ADDL binding (detected with NU1, Fig. 2K–M). ADDL binding to synaptic hot-spots in hippocampal neurons is evident in images at highermagnification (60×objective, PanelsLand M). PubMed:17403556

Out-Edges 2

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.