Equivalencies: 0 | Classes: 1 | Children: 0 | Explore

Appears in Networks 2

In-Edges 4

act(p(HGNC:EP300)) increases p(HGNC:MAPT, pmod(Ac, Lys, 321)) View Subject | View Object

Incubation with p300, not pCAF, led to tau acetylation, while both p300 and pCAF were active in transferring acetyl groups to histones as expected (Figure 1A). A few putative acetylated lysines were in the N- and C- terminal regions; 13 were in microtubule-binding domains (Figure 1B and Table-S1). Putative acetylated N-terminal lysines (e.g., lysines 163, 174, and 180) appeared to be acetylated in all MS analyses. Those in the microtubule-binding domains appeared to be acetylated in a subset of MS analyses, suggesting variable acetylation at these sites in vitro. PubMed:20869593

Appears in Networks:

p(HGNC:MAPT, pmod(Ac, Lys, 321)) increases deg(p(HGNC:MAPT, pmod(Ac, Lys, 321))) View Subject | View Object

Depending on the sites, the acetylation of tau could inhibit its degradation (for example, when at Lys163, Lys280, Lys281 or Lys369) or, by contrast, facilitate its degradation and suppress its phosphorylation and aggregation (for example, when at Lys259, Lys290, Lys321 or Lys353) PubMed:26631930

path(MESH:"Alzheimer Disease") decreases p(HGNC:MAPT, pmod(Ac, Lys, 321)) View Subject | View Object

Acetylation at Lys259, Lys290, Lys321 or Lys353 within the KXGS motifs occurs in normal tau, and is reduced in brains of individuals with AD and of rTg4510 transgenic mice PubMed:26631930

Out-Edges 7

p(HGNC:MAPT, pmod(Ac, Lys, 321)) decreases p(HBP:"Tau aggregates") View Subject | View Object

Our findings indicate that several acetylation sites in tau are responsive to HDAC6 and that acetylation on Lys-321 (within a KCGS motif) is both essential for acetylation-mediated inhibition of tau aggregation in vitro and a molecular tactic for preventing phosphorylation on the downstream Ser-324 residue. Tau phosphorylation of Ser-324 (pSer-324) has not previously been evaluated in the context of tauopathy, and here we observed increased deposition of pSer-324-positive tau both in mouse models of tauopathy and in patients with Alzheimer's disease. These findings uncover a novel acetylation-phosphorylation switch at Lys-321/Ser-324 that coordinately regulates tau polymerization and function. PubMed:28760828

Appears in Networks:

p(HGNC:MAPT, pmod(Ac, Lys, 321)) decreases p(HGNC:MAPT, pmod(Ph, Ser, 324)) View Subject | View Object

Our findings indicate that several acetylation sites in tau are responsive to HDAC6 and that acetylation on Lys-321 (within a KCGS motif) is both essential for acetylation-mediated inhibition of tau aggregation in vitro and a molecular tactic for preventing phosphorylation on the downstream Ser-324 residue. Tau phosphorylation of Ser-324 (pSer-324) has not previously been evaluated in the context of tauopathy, and here we observed increased deposition of pSer-324-positive tau both in mouse models of tauopathy and in patients with Alzheimer's disease. These findings uncover a novel acetylation-phosphorylation switch at Lys-321/Ser-324 that coordinately regulates tau polymerization and function. PubMed:28760828

Appears in Networks:

p(HGNC:MAPT, pmod(Ac, Lys, 321)) increases deg(p(HGNC:MAPT, pmod(Ac, Lys, 321))) View Subject | View Object

Depending on the sites, the acetylation of tau could inhibit its degradation (for example, when at Lys163, Lys280, Lys281 or Lys369) or, by contrast, facilitate its degradation and suppress its phosphorylation and aggregation (for example, when at Lys259, Lys290, Lys321 or Lys353) PubMed:26631930

p(HGNC:MAPT, pmod(Ac, Lys, 321)) decreases p(HGNC:MAPT, pmod(Ph)) View Subject | View Object

Depending on the sites, the acetylation of tau could inhibit its degradation (for example, when at Lys163, Lys280, Lys281 or Lys369) or, by contrast, facilitate its degradation and suppress its phosphorylation and aggregation (for example, when at Lys259, Lys290, Lys321 or Lys353) PubMed:26631930

p(HGNC:MAPT, pmod(Ac, Lys, 321)) decreases a(HBP:"Tau aggregates") View Subject | View Object

Depending on the sites, the acetylation of tau could inhibit its degradation (for example, when at Lys163, Lys280, Lys281 or Lys369) or, by contrast, facilitate its degradation and suppress its phosphorylation and aggregation (for example, when at Lys259, Lys290, Lys321 or Lys353) PubMed:26631930

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.