PubMed: 28760828

Title
An acetylation-phosphorylation switch that regulates tau aggregation propensity and function.
Journal
The Journal of biological chemistry
Volume
292
Issue
None
Pages
15277-15286
Date
2017-09-15
Authors
Carlomagno Y | Castanedes-Casey M | Chung DC | Cook C | DeTure M | Dickson DW | Dunmore J | Madden BJ | Petrucelli L | Tong J | Yue M

Evidence b93d471e76

Our findings indicate that several acetylation sites in tau are responsive to HDAC6 and that acetylation on Lys-321 (within a KCGS motif) is both essential for acetylation-mediated inhibition of tau aggregation in vitro and a molecular tactic for preventing phosphorylation on the downstream Ser-324 residue. Tau phosphorylation of Ser-324 (pSer-324) has not previously been evaluated in the context of tauopathy, and here we observed increased deposition of pSer-324-positive tau both in mouse models of tauopathy and in patients with Alzheimer's disease. These findings uncover a novel acetylation-phosphorylation switch at Lys-321/Ser-324 that coordinately regulates tau polymerization and function.

Evidence fb8ad25ac6

HDAC6 inhibition leads to a significant reduction in tau levels as detected by the human tau-specific antibody E1 (Fig. 6 (a and c) and supplemental Fig. S6). We also observed a striking decrease in phosphorylation at Ser-324, which was statistically significant even when normalizing to E1 to control for the reduction in tau levels (Fig. 6 (a and b) and supplemental Fig. S6).

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.