Table of Contents

Contradictory Statements 1

These pairs of nodes have a contradiction in their causal relationships, meaning they have more than one of INCREASES, DECREASES, or CAUSES NO CHANGE. This may be due to different experimental conditions, so these statements need to be carefully considered in analyses.

Source Relations Target
p(RGD:Ifng) increases, decreases p(HGNC:CXCL8)

Unstable Pairs 5

Chaotic Pairs
Nodes that mutually increase each other, such as when both A increases B and B increases A.
Dampened Pairs
Nodes that mutually decrease each other, such as when both A decreases B and B decreases A.

While neither chaotic nor dampened pairs are biologically invalid, they require additional context to understand their regulation.

Type Node A Node B
Chaotic complex(SCOMP:"Nfkb Complex") p(HGNC:CXCL8)
Chaotic p(RGD:Map3k7) p(RGD:Tnf)
Chaotic complex(SCOMP:"Nfkb Complex") complex(SCOMP:"Nfkb Complex")
Chaotic complex(SCOMP:"Nfkb Complex") p(RGD:Tnf)
Dampened p(RGD:Nfkbia) p(RGD:Nfkbia)

Contradictory Triplets 14

Analysis of triple stability comes from a deep graph theoretic background. It identifies triangles within the graph that have logically inconsistent relations.

Separately Unstable Triplet
When both A positiveCorrelation B, B negativeCorrelation C, but C positiveCorrelation A.
Mutually Unstable Triplets
When both A negativeCorrelation B, B negativeCorrelation C, and C negativeCorrelation A.
Jens Contradictory Triplet
When A increases B, A decreases C, and C positiveCorrelation A.
Increase Mismatch Triplet
When A increases B, A increases C, and C negativeCorrelation A.
Decrease Mismatch Triplet
When A decreases B, A decreases C, and C negativeCorrelation A.
Type Node A Node B Node C
Jens p(RGD:Tnf) p(RGD:Tnfrsf1a) p(SFAM:"MAPK p38 Family")
Jens a(CHEBI:"reactive oxygen species") complex(SCOMP:"NADPH Oxidase Complex") p(SFAM:"MAPK p38 Family")
Jens complex(SCOMP:"Nfkb Complex") complex(SCOMP:"Nfkb Complex") p(RGD:Tnf)
Jens a(CHEBI:"reactive oxygen species") complex(SCOMP:"NADPH Oxidase Complex") p(RGD:Mapk1)
Jens a(CHEBI:"reactive oxygen species") complex(SCOMP:"NADPH Oxidase Complex") p(HGNC:CXCL8)
Jens p(RGD:Nfkbia) p(RGD:Nfkbia) p(RGD:Nfkbia)
Jens p(RGD:Ccl3) p(RGD:Ccr5) p(SFAM:"MAPK p38 Family")
Jens a(CHEBI:superoxide) complex(SCOMP:"Nfkb Complex") p(HGNC:CXCL8)
Jens a(CHEBI:"reactive oxygen species") complex(SCOMP:"NADPH Oxidase Complex") p(RGD:Mapk3)
Jens complex(SCOMP:"Nfkb Complex") complex(SCOMP:"Nfkb Complex") p(HGNC:CXCL8)
Jens complex(SCOMP:"Nfkb Complex") p(RGD:Map3k7) p(RGD:Tnf)
Jens a(CHEBI:"reactive oxygen species") p(HGNC:CXCL8) p(RGD:Cxcr2)
Jens p(RGD:Map3k7) p(RGD:Tnf) p(SFAM:"MAPK p38 Family")
Jens complex(SCOMP:"Nfkb Complex") complex(SCOMP:"Nfkb Complex") complex(SCOMP:"Nfkb Complex")

Unstable Triplets 11

Like unstable pairs, unstable triplets require additional context to understand their mechanisms of regulation.

Chaotic Triplets
A triplet of nodes that mutually increase each other, such as when A increases B, B increases C, and C increases A.
Dampened Triplets
A triplet of nodes that mutually decreases each other, such as when A decreases B, B decreases C, and C decreases A.
Type Node A Node B Node C
Chaotic p(RGD:Tnf) p(RGD:Tnfrsf1a) p(SFAM:"MAPK p38 Family")
Chaotic a(CHEBI:"reactive oxygen species") complex(SCOMP:"NADPH Oxidase Complex") p(SFAM:"MAPK p38 Family")
Chaotic complex(SCOMP:"Nfkb Complex") complex(SCOMP:"Nfkb Complex") p(RGD:Tnf)
Chaotic a(CHEBI:"reactive oxygen species") complex(SCOMP:"NADPH Oxidase Complex") p(RGD:Mapk1)
Chaotic a(CHEBI:"reactive oxygen species") complex(SCOMP:"NADPH Oxidase Complex") p(HGNC:CXCL8)
Chaotic p(RGD:Ccl3) p(RGD:Ccr5) p(SFAM:"MAPK p38 Family")
Chaotic a(CHEBI:"reactive oxygen species") complex(SCOMP:"NADPH Oxidase Complex") p(RGD:Mapk3)
Chaotic complex(SCOMP:"Nfkb Complex") complex(SCOMP:"Nfkb Complex") p(HGNC:CXCL8)
Chaotic complex(SCOMP:"Nfkb Complex") p(RGD:Map3k7) p(RGD:Tnf)
Chaotic a(CHEBI:"reactive oxygen species") p(HGNC:CXCL8) p(RGD:Cxcr2)
Chaotic p(RGD:Map3k7) p(RGD:Tnf) p(SFAM:"MAPK p38 Family")

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of the open source project, PyBEL. Please feel free to contact us here to give us feedback or report any issues.